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Human regeneration: An achievable goal or a dream?
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The main objective of regenerative medicine is to replenish cells or tissues or even to restore different body parts that
are lost or damaged due to disease, injury and aging. Several avenues have been explored over many decades to
address the fascinating problem of regeneration at the cell, tissue and organ levels. Here we discuss some of the
primary approaches adopted by researchers in the context of enhancing the regenerating ability of mammals. Natural
regeneration can occur in different animal species, and the underlying mechanism is highly relevant to regenerative
medicine-based intervention. Significant progress has been achieved in understanding the endogenous regeneration in
urodeles and fishes with the hope that they could help to reach our goal of designing future strategies for human

regeneration.
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1. Introduction

The human mind has shown boundless capacity of imagina-
tion, but evolution has deprived the human body of any
significant capacity to regenerate. We have heard and read
about liver regeneration in the Greek mythical character
Prometheus. The ten-headed Ravana in Hindu mythology
can be a fit of imagination, but considering it synonymous
to head regeneration in hydra may be farfetched. The ever
multiplying hypostomes in hydra or regenerating a whole
new body of flatworm are examples of varied regeneration
which did not escape curious minds and created enormous
waves of thought and imagination. Nature has an impressive
array of organisms such as planaria, axolotl, hydra, zebra-
fish, Xenopus, Drosophila, etc., which are capable of regen-
erating their lost or damaged body parts. Scientists have been
studying the fascinating problem of regeneration in these
animal species for well over two centuries (Reaumer 1742;
Trembley 1744; Spallanzani 1768; Morgan 1901; Lenhoff
and Lenhoff 1986; see Dinsmore 1991). It remains a major
challenge to explain the variable capability of regeneration
among different animal species. However, these studies and
their relevance to human health and disease have long been
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overlooked. This is because mammals, including humans,
are considered to be regeneration-incompetent, where mas-
sive replacement of tissue or of entire body parts is not
possible. Thus, for many years significant focus of mamma-
lian, rather the human, regeneration research remained con-
fined predominantly to using the ‘can’t do it’ model rather
than the ‘can do it” model. Recent research has somewhat
broadened the view, shifted the paradigm and caused a
concomitant change in understanding hopefully to a more
fruitful direction. Yet the prospect of creating new human
tissues and organs and their day-to-day use in medicine still
remain elusive and continue to be a formidable challenge for
scientists and clinicians.

Our ambition to induce human regenerative potential has
been rekindled by recent scientific advances in the field of
biology that include tissue engineering and stem cell biology.
These methods have future potential in regenerative medicine,
but regenerative therapies based on them and having wide
scope of application are yet to be adapted for routine use. On
the other hand, a critical appraisal of the underlying basis of
regenerative potential of different organs in regeneration
competent models is an essential prerequisite in order to bring
about any feasible medical treatment to humanity. The

Dedifferentiation; endogenous stem cell; iPSC; lower vertebrates; natural regeneration; regenerative therapy

J. Biosci. © Indian Academy of Sciences


http://crossmark.crossref.org/dialog/?doi=10.1007/s12038-016-9589-x&domain=pdf

Sukla Ghosh

challenge is to understand why regeneration does happen in
many lower vertebrates but starkly fails to occur in mammals.
Unraveling the cellular and molecular mechanisms underlying
these efficient regenerative processes in different model organ-
isms could provide vital clues to develop future therapeutic
strategies for inducing regeneration in higher vertebrates in-
cluding humans. However, to achieve the important goal of
inducing regeneration in higher vertebrates, several
approaches could have been adapted. These are (a) transplan-
tation of exogenous stem cells or progenitors into injured
tissues or organs, (b) transplantation of cell-seeded scaffolds
made of either synthetic, biodegradable or non-biodegradable
materials and finally (c) induction of endogenous or natural
regeneration.

2. Promises and challenges of stem-cell-based therapy

The discovery of adult and embryonic stem cells (ESC) in
early 1980s (Martin 1981), and further studies (Thomson
et al. 1998), brought the concept of cell-based regenerative
medicine into the limelight. The first human ESCs were
generated in the late 1990s. Subsequently it was shown that
besides embryonic stem cells, the maintenance and repair of
adult tissues can be achieved by niches of adult stem cells as
well. The use of ESC remains controversial because of the
ethical concerns involving the use of early embryos. There
has been a continued interest in generating alternatives to
ESC, which led to the discovery of several different multi- or
pluripotent tissue-specific adult stem cells. Despite great
progress in cell culture techniques and identification of tissue
specific multi- or pluripotent cell types, lineage-committed
cells got much attention from tissue engineers, and several
lineage-committed cells were thought to be viable options
for therapeutic use in the repair of different organs, such as
liver, bladder, kidney and pancreas (Van de Kerkhove ef al.
2002; Selden and Hodgson 2004; Atala et al. 2006; Streetz
2008; Opara et al. 2010; Roy et al. 2011). But these lineage-
committed cells may not be a viable option, at least in some
situations, due to their low proliferation rate, accessibility and
limited numbers. Thus, predominant attention was paid to-
wards the exploration of the benefits of multipotent stem cells
that can generate both mesenchymal and non-mesenchymal
tissues in vitro as well as in vivo. Several mesenchymal stem
cells have been and continue to be used in clinical trials for
different remedies with variable efficacies. Some of the prom-
ising stem cell sources are the umbilical cord blood, the um-
bilical cord itself, muscle and adipose tissue (Bosch ef al.
2000; Zak et al. 2001; 2002; Fukuchi et al. 2004; Lee et al.
2004; Trounson 2009; Trounson et al. 2011). A rapid progress
in another front of cell-based therapy includes the generation
of neural stem cells (NSC). Vigorous efforts had been
mobilized to produce neural stem/progenitor cells (NS/PC)
that have led to the development of cellular therapeutic
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transplantation strategies targeting different CNS disorders
and injuries (Okano 2010). These include fetal dopaminergic
cells for Parkinson’s disease (PD), human fetal neural stem
cells for Pelizaeas Merzbacher disease (PMD), spinal cord
injury (SCI), amytrophic lateral sclerosis and human ESC
derived oligodendrocyte precursors in SCI. The risks and
benefits of the effectiveness of stem cell transplantation in
different central nervous system (CNS) disorders need to
be calibrated using appropriate disease models. A greater
understanding of the basic nature of neural stem cell
(NSC), neural stem/progenitor cell (NS/PC) and how
recapitulating the normal CNS developmental program
contribute to the repair process, could provide important
clues for possible innovative therapies in treating the dam-
aged CNS.

The recent discovery of induced pluripotent stem cells
(iPSC) and concurrent advancement of cell culture proce-
dures for their cell-type-specific differentiation has opened
another exciting facet in regeneration research with huge
potential. There are several advantages of iPSC over ESC.
Somatic cells of human origin can be reprogrammed into
iPSC and these cells can be obtained by methods free from
ethical riddles. Furthermore, the possibility of creating
patient-specific human iPSC could revolutionize personal-
ized medicine. Although the efficiency of obtaining appro-
priate cells in huge numbers, their storage and distribution
still remains a challenge. These aspects need serious atten-
tion to overcome such hurdles. The worrisome features also
highlighted by several recent studies is the occurrence of
increased somatic mutation (Gore et al. 2011), increased
copy number variation (Hussein et al. 2011), significant
variation in DNA methylation and epigenomic event in
iPSCs, when compared with their fibroblast origin and hu-
man embryonic stem cells (hESC). This raises some serious
safety concerns that require further detailed study to address
these issues. Hence, in comparison, the primary bone of
contention in allogenic embryonic stem cell (ESC) or fetal
oriented cells are immune reaction and ethical concern,
whereas iPSC has higher potential risk of tumor formation
and genetic instability. Needless to say, future approaches
should explore the possibility of using dedifferentiated so-
matic stem cells, which could be obtained as an abundant
source of stem cells (Tang et al. 2012; Cai et al. 2007). There
are reports that several human tissues can be dedifferentiated
into progenitor states in vitro; examples are human thyroid
follicular cells, epidermal keratinocytes and islet cells
(Suzuki ef al. 2011; Sun et al. 2011; Hanley ef al. 2011).

3. Relevance of tissue engineering to replace
damaged tissues and organs

In the last two decades several bioengineered tissues have
become commercially available to treat local wounds in
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diabetic foot ulcers, cartilage grafts or bony voids (Lewan-
dowska-Szumiel and Kalaszczynska 2013). Use of many
biomaterials have been proposed in recent years for tissue
engineering, but the prospect of creating a new functional
human organ in vitro, like a whole arm or for that matter,
even a hand or digit, is very limited at present. Tissue
engineers believe, constructing a human limb in a highly
sophisticated environment, called an ‘ex vivo bioreactor’,
may be a realistic target within next two decades. However,
this ambitious goal of regenerating human limbs has to
confront numerous hurdles, such as the difficulties in pre-
paring the cultured limbs in the first place, masking the
interface with nerves or blood vessels, revascularization
and integrating the finished product, i.e. the bioengineered
organ with appropriate parts of the host (which would need
high-tech surgical skills) and lastly to restore the function of
the limb. Regenerating an entire limb is only one example of
the complexity involved in generating new organs. More-
over, the strategy to develop ex vivo construction would
further differ significantly from one organ to other. The
choice of strategy to generate new organs in vitro thus
remains a daunting challenge. One of the most principal
difficulties in the area of regenerative medicine is to select
the appropriate cell source for transplant. While using cell-
seeded scaffold, implanting such a scaffold would require a
steady supply of nutrient to the cells inside the scaffold,
which is a difficult proposition and a viable route has not
yet been found (Langer 2007)

Despite these startling discoveries in the field of stem cell
biology, the ultimate goal of regenerating a functional organ
is still a far cry. Since the incidence of stem cell engraftment
is low and represents the behavior of a small minority of
cells within the target tissue, it may not be adequate for
regenerating an entire organ. Thus, re-growing a complex
organ and restoring its full functionality poses challenge at
multiple planes. It requires restoration of full structural tissue
diversity and its spatial organization. Furthermore, increased
emphasis must be given to integrate vital information from
developing and regenerating organs to understand how these
structures can be made and remade. For example, if growing
an entire limb is not plausible in a bioreactor, generating an
accessory limb in vivo by identifying appropriate positional
information along with molecular cues involved in re-
patterning could be a way out (Bryant et al. 2002; Gardiner
et al. 2002; Endo ef al. 2004). It has been shown that limb
regeneration is dependent on the cells of connective tissue
that retains positional memory and that information is being
recalled during re-patterning. In this context it can be em-
phasized that some cells are plastic that can be reprog-
rammed to generate new positional information whereas
others are stable. The stability of positional information is
related with tissue organization, proliferation and cellular
differentiation (McCusker et al. 2015).

4. Limited regenerative response in mammals

Unfortunately, adult humans have a very restricted capacity
to regenerate. Only selective tissues like bone marrow, in-
testinal mucosa or superficial layers of skin can regenerate
(Epstein and Maibach 1965; Chan and Yoder 2004; Oates
and West 2006; Michalopoulos 2007). These are often re-
ferred to as physiological regeneration, where continuous
replacement of old and damaged tissue occurs because of
constant turnover and proliferation of resident progenitor
cells. The term regeneration is being used loosely by many
to describe both tissue and organ regeneration. In mammals
the biological events underlying muscle, liver and bone
regeneration actually refers to the capacity to replace the
amount of tissue that is lost. Moreover, the extent of tissue
regeneration as described above is variable and cannot gen-
erate whole organs with identical anatomical pattern of the
original. To be more explicit, liver regeneration actually
represents compensatory growth rather than regeneration
wherein tissue hyperplasia occurs after partial hepatectomy.
The remaining liver expands in mass to compensate for lost
tissue without activation of progenitor cells (Michalopoulos
and De Frances 1997). On the other hand, skeletal muscle
repair is satellite cell mediated and works extremely well for
limited damage, like tears, strains, toxin damage and smaller
lesions, where fibrous scar tissue can be visible in the regen-
erated muscle. However, replacement of the entire excised
muscle or replacement of volumetric muscle loss (VML)
resulting from severe traumatic injuries is not possible
(Grefte et al. 2007; Grogan and Hsu 2011). Again the
epidermis of skin can regenerate efficiently but damaged
dermis leads to fibrosis (Martin 1997; Harty et al. 2003).

5. Endogenous regeneration is widespread in
lower vertebrates

Among vertebrates, urodele amphibians and teleost fishes
are capable of extraordinary regeneration. As adults, they
can efficiently regenerate a catalogue of organs like limbs,
fins, jaws, retina, heart and spinal cord (Goss 1969;
Oberpriller and Oberpriller 1974; Raymond et al. 1988;
Geraudie and Singer 1992; Ghosh et al. 1994; Becker et al.
1997; Clarke and Ferretti 1998; Poss et al. 2002; Akimenko
et al. 2003; Ferretti et al. 2003; Brockes and Kumar 2005;
Hui et al. 2010). These are examples of reparative regener-
ation and the mechanism underlying this process is far less
understood. On the other hand, the anuran frog (Xenopus
laevis) can only regenerate its limbs and tail as larvae (Goss
1969; Antos and Tanaka 2010; Poss 2010).

Regeneration is often referred to as reactivation of devel-
opment and appropriately defined as ‘regeneration renais-
sance’, where recreation of embryonic environment occurs
in adult tissue (Bryant 1999). For example, in the urodele
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limb, a widely studied model for vertebrate appendage,
regeneration proceeds through the formation of blastema, a
mound of proliferating mesenchymal progenitors, that
resembles morphologically and in gene expression profile
to a limb bud (Knapp et al. 2013). There is a creation of
embryonic/undifferentiated state for redevelopment to take
place, which is achieved once the cells have been differentiat-
ed. The proliferating blastemal cells redifferentiate primarily
into their parental phenotype of derivation as understood by
genetic marking and eventually restore the missing structures.
The proliferating mesodermal tissue in blastema arises through
a process of dedifferentiation, described as the reversal of cell
fate to a more primitive state, as these tissues lose their differ-
entiated morphology. Early grafting experiments suggest that
the tissues that contribute to blastema are muscle, dermal
fibroblast, cartilage, Schwann cell and connective tissue. Myo-
fibre dedifferentiation contributes to the limb blastema, as is
evident from earlier histological and electron microscopic
analysis, as well as from the radioactive tracer studies
(Thornton 1938; Hay 1959; Hay and Fischman 1961). A
detailed analysis revealed that the amphibian blastemal cells
are locally derived and are not pluripotent.

Dedifferentiation is a process involving cell cycle re-entry
with loss of the most differentiated character of the cells
taking part in this process, as observed in various regenerat-
ing organs like limb, jaw, tail, etc. (Ferretti and Ghosh 1997;
Brockes and Kumar 2002). A thrombin activated serum
factor can induce differentiated salamander muscle fibre to
reenter into the S-phase. This factor is also important in
transdifferentiation of retinal pigment epithelial cells (PEC)
to lens (Thitoff et al. 2003) as well as in heart regeneration in
zebrafish and salamander, where cardiomyocytes re-enter
cell cycle (Poss ef al. 2002).

Retinoblastoma protein (Rb) plays an important part in
cell cycle re-entry. Inactivation of hyperphosphorylated Rb
allows mature cells to dedifferentiate. In contrast, mouse
myotubes are firmly withdrawn from cell cycle re-entry
and remain refractory to the growth factors when differenti-
ated. This differential response between newt and mouse
myotubes had been corroborated with the state of phosphor-
ylation of Rb and it stays unphosphorylated in mouse myo-
tubes. It has also been shown that newt limb blastemal
extract not only can induce dedifferentiation of newt myo-
tubes but also can induce dedifferentiation of mouse C2C12
myotubes into proliferating mononucleated cells (Odelberg
et al. 2000). Another important component in this dediffer-
entiation saga is the genes of the Msx family. Msx1, a
transcriptional repressor, is required for myotube cell cycle
re-entry in vitro. Both in urodeles and mammals Msx1 can
induce differentiated, multinucleated myofibre to proliferat-
ing mononucleate cells in vitro (Tanaka et al. 1997,
Odelberg et al. 2000; Kumar et al. 2004). Members of Msx
family are expressed in many regenerating systems like
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urodele limb (Simon et al. 1995; Koshiba et al. 1998;
Odelberg 2002), fish fin (Murciano et al. 2002) and spinal
cord (Hui et al. 2015), anuran tail and limb bud (Beck ef al.
2003) and neonatal mouse digit tip (Reginelli ef al. 1995). In
limb, Msx is known to be expressed in early stages of
development during an epithelial-mesenchymal transition,
where the expression allows cells to be maintained in an
undifferentiated state. The above-mentioned observations
are quite encouraging because these evidences highlight the
existence of a common mechanism of dedifferentiation in a
variety of regenerating tissues and the feasibility of inducing
mammalian cellular dedifferentiation.

6. Endogenous regeneration involves both resident
stem cell and dedifferentiation

There has been a long-standing debate on the origin and fate
of the regenerative cells in various regenerating organs. The
most critical issues are the identification and characterization
of the source of proliferative blastemal cells contributing to
the formation of the regenerating tissue and the underlying
mechanism controlling it. Cellular strategies used during
regeneration in newt and salamanders have been studied
for long. Following amputation of limb, for example, there
would be wound healing by rapid migration of epithelial
cells. Underlying the wound epidermis, mesodermal cells
accumulate to give rise to a blastema, which is often consid-
ered to be an equivalent of limb bud. One important property
of the blastema is the presence of proliferating mesodermal
cells that arise by a process of dedifferentiation. Differenti-
ated stump cells lose their characteristic genetic program
such as myosin synthesis or collagen synthesis and become
undifferentiated into a stem cell like state and proliferate
rapidly followed by redifferentiation. This process of dedif-
ferentiation can be observed histologically and electron mi-
croscopically (Hay 1959) where multinucleate myofibres get
fragmented into single cells and enter into the blastema.
Furthermore the intrinsic abililty of newt muscle fibres to
dedifferentiate, to fragment and to proliferate was also con-
firmed in vitro (Tanaka et al. 1999).

In recent years, the advent of new technologies like line-
age tracing analysis and use of transgenics in fish and
amphibians allowed us to understand some of the key issues
common to the natural regenerative event. The generation of
transgenic axolotl line expressing green fluorescent protein
in targeted tissue demonstrated fragmentation of myofibres
and its contribution to blastema (Kragl et al. 2009). This
study also confirmed dedifferentiation of tissues, other than
muscle, and their contribution to the blastema. Cells derived
from dedifferentiated tissues retain memory of their devel-
opmental origin and these are restricted progenitors, which
contribute to the formation of very limited spectrum of
tissues. For example, axolotl limb Schwann cells and muscle
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were labeled with embryonic pre-somitic mesoderm and
neural crest transplantation, when amputated labeled
Schwann cells gave rise to Schwann cells and muscle regen-
erated into muscle but not into cartilage. So, blastemal cells
are not multi-potent but have restricted differentiation poten-
tial. Studies using genetic-labelling (Cre/loxP)-based fate
mapping demonstrate that in regenerating zebrafish heart
and fin, cardiomyocytes and osteoblasts indeed dedifferenti-
ate and contribute to blastema (Jopling ez al. 2010; Kikuchi
et al. 2010; Knopf et al. 2011). Fin regeneration involves
expansion of lineage restricted progenitors generated by
dedifferentiation of mature cells and heart regeneration pri-
marily involves pre-existing cardiomyocytes rather than
progenitors.

Although experimental evidence suggests an overall line-
age restriction in axolotl limb blastema, it is important to
resolve the fact as to whether the blastema formation
involves activation of resident stem cells/progenitor popula-
tions or it involves dedifferentiation of post mitotic stump
cells. Almost all studies in larval urodeles demonstrate myo-
fiber dedifferentiation, the exception being one species of
adult urodele Notophthalmus viridescence, where muscle
satellite cells contribute to blastema. However, the presence
of stem cells have also been demonstrated in other regener-
ating organs such as, in the ependymal lining of salamander
brain and zebrafish spinal cord ( Berg et al. 2010; Hui et al.
2015). Morrison et al. (20006) isolated satellite cells in regen-
erating limbs expressing markers of mammalian satellite
cells Pax7 and M-cadherin. Evidences suggests that, dedif-
ferentiating muscle fibers do not contribute to blastemas of
either Xenopus tadpole tail and limb or zebrafish tail (Gar-
gioli and Slack 2004; Cavaco-Rodrigues et al. 2012). On the
contrary, satellite cells do contribute to Xenopus tail regen-
eration (Chen et al. 2006), suggesting stem cell activation
rather than dedifferentiation. Recently, Sandoval-Guzman
et al. (2014) highlighted differences in dedifferentiation
and stem cell recruitment during muscle regeneration in
two different species such as newt and axolotl. They reported
relevance of Pax7 positive satellite cells to muscle regener-
ation and referred to two different scenarios. In newt, myo-
fiber dedifferentiation is an essential part of limb
regeneration where myofibre fragmentation result in prolif-
erating, Pax7-negative, mononuclear cell population in blas-
tema and that contributes in formation of the new limb. In
case of axolotl, myofibre do not generate proliferating cells
but Pax7-positive cells give rise to regenerating limb tissue.
These results, in effect, highlight the possibility of imple-
menting multiple strategies to induce regeneration even in
mammals. Finally, the question remains: could it be possible
to induce dedifferentiation in mammalian tissue and could it
be a procedure for inducing regeneration in near future? To
explore this possibility, studying the potential differences
between cells that dedifferentiate in response to injury and

those which do not is a line of research that should be
vigorously pursued.

7. Endogenous repair mechanism:
Potential for repair and regeneration

An impressive range of different strategies were adapted to
regenerate various tissues and organs such as dedifferentia-
tion of mature cells, for example, heart, limb, fin; trans-
differentiation where cells dedifferentiate and subsequently
natural developmental program is activated allowing these
cells to redifferentiate into a new lineage, for example, Wolf-
fian regeneration of lens in urodeles, anuran frog and cobitid
fish (Henry and Tsonis 2010; Henry et al. 2013). Lens
regeneration takes place via the transdifferentiation path. It
involves dedifferentiation of pigmented epithelial cells
(PEC). The dorsal iris cells re-enter the cell cycle and even-
tually redifferentiate into a new lens.

The ultimate goal of replacement of lost or damaged cells
due to trauma or disease can potentially also be achieved by
reprogramming, aimed to induce differentiated mature cells
reverting into pluripotent stage. It has been observed that the
oocyte type linker histone B4, which is associated with
reprogramming, is also required for newt lens transdifferen-
tiation (Maki et al. 2010). This implies that transdifferentia-
tion may share reprogramming as there is a lineage switching
similar to what is seen in somatic cell nuclear transfer into
oocyte.

In the previous section we have discussed the complex
biological process that takes place during regeneration of
many organs in lower vertebrates. Although it is far from
clear how blastema formation is achieved. Dedifferention
and reprogramming seem apparently similar since in both
cases a differentiated cell is induced to revert to a less
differentiated state. The notion that the process of dediffer-
entiation of fibroblast cell to iPSC and dedifferentiation
occurring during regeneration in vivo, may be regulated by
similar mechanism is strikingly enigmatic yet remain unex-
plored in its full gamut. Some reports are coming into picture
in the recent years which reveal that blastemal cells are not
pluripotent but have strong similarities with iPSC. Christen
et al. (2010) hypothesized that even the low level of expres-
sion of the transcription factor(s) may trigger partial reprog-
ramming wherein the cells become multipotent during
epimorphic regeneration. Such intermediary stages are com-
monly observed during reprogramming among iPSC, and
others attempt to understand mechanism of reprogramming
by interpreting these intermediate stages (Hochedlinger and
Plath 2009). Direct reprogramming can be mediated by a
forced expression of only four fate determining transcription
factors (such as Oct4, Sox2, c-myc and KLf4), as expressed
in ESC. Some examples are the derivation of iPSC from
adult somatic cells, reprogramming of pancreatic beta cells
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from exocrine cells and cardiac or dermal fibroblast to car-
diac muscle cell (Taub 2004; Takahashi and Yamanaka
2006; Zhou et al. 2008). Up-regulation of these reprogram-
ming factors has been reported during the dedifferentiation
of regenerating newt limb and PEC (Maki et al. 2009),
zebrafish spinal cord (Hui et al. 2015) and zebrafish retina
(Goldman 2014). Thus different tissues regenerate using one
or more of these abovementioned strategies but more infor-
mation is required to understand similarities and differences
of these three routes (Jopling et al. 2011).

8. Summary

Our goal was to study the events involved during the
regeneration of different organs in lower vertebrates and
to understand the cellular and molecular basis underlying
these regenerative processes. This would allow us to
apply regenerative strategies to address different diseases
and injuries in mammals, including humans. So far, the
focus has been on a few regenerating organs like limb,
fin, heart and CNS. Identification of cell sources for
regeneration in several lower vertebrate model organisms
have elegantly elucidated the existence of multiple ave-
nues by which progenitor cells are being produced dur-
ing regeneration, namely dedifferentiation of mature cells
or tissue stem cells. Furthermore, decoding the modes
and mechanisms underlying endogenous regeneration in
different model organisms would permit us to intensify
our understanding of the scope of repair and regenera-
tion in humans. Equally important is to understand as to
how mechanisms of regeneration compare to embryolog-
ical development. This would shed light to validate the
long-standing dogma that regeneration is a mere recapit-
ulation of development or clarify if it is made possible
by independent novel mechanism in some organisms.
Substantial work is still required to elucidate the molec-
ular basis of dedifferentiation, initiation of regenerative
response, positional identity and re-patterning. Recent
results demonstrate the importance of studying regener-
ative events in not just one but different model organ-
isms as each system tells us about different but distinct
concepts which could be exploited for inducing endoge-
nous regeneration in higher organism like human. We
are beginning to answer some of the key problems of
regeneration and may soon be able to replace our organs
when they are injured or aged or diseased.

The ability to use endogenous stem cell for tissue regen-
eration has a lot of appeal and expectations. It could ideally
avert many concerns associated with stem cell based thera-
pies and bioengineered scaffolds and prosthetics. However,
the approaches like tissue engineering and exogenous stem-
cell-based therapy cannot be made redundant overnight. We
still need greater understanding of the tissues that harness
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adult stem cells, the physiologically relevant niches like
growth factors and hormones to recruit endogenous stem
cells in appropriate direction, to identify the agents that can
mobilize or expand the endogenous stem cells and lead to
integration of the same into appropriate tissues. At the end of
the day such approach would provide enormous hope for
many human disorders.
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